Health assessment and life prediction of cutting tools based on support vector regression
نویسندگان
چکیده
The integrity of machining tools is important to maintain a high level of surface quality. The wear of the tool can lead to poor surface quality of the workpiece and even to damage of the machine. Furthermore, in some applications such as aeronautics and precision engineering, it is preferable to change the tool earlier rather than to loose the workpiece because of its high price compared to the tool’s one. Thus, to maintain a high quality of the manufactured pieces, it is necessary to assess and predict the level of wear of the cutting tool. This can be done by using condition monitoring and prognostics. The aim is then to estimate and predict the amount of wear and calculate the remaining useful life of the cutting tool. This paper presents a method for tool condition assessment and life prediction. The method is based on nonlinear feature reduction and support vector regression. The number of original features extracted from the monitoring signals is first reduced. These features are then used to learn nonlinear regression models to estimate and predict the level of wear. The method is applied on experimental data taken from a set of cuttings and simulation results are given. These results show that the proposed method is suitable for assessing the wear evolution of the cutting tools and predicting their remaining useful life. This information can then be used by the operators to take appropriate maintenance actions. T. Benkedjouh EMP, Laboratoire Mécaniques des Structures (LMS), Bordj El Bahri, Algiers, Algeria K. Medjaher, N. Zerhouni FEMTO-ST, Université de Franche-Comté/CNRS/ENSMM/UTBM Automatic Control and Micro-Mechatronic Systems Department 24, rue Alain Savary, 25000 Besançon, France Tel.: +33 3-81-402796 Fax: +33 3-81-402809 E-mail: [email protected] S. Rechak ENP, Laboratoire Génie Mécanique, El-Harrach, Algiers, Algeria 2 T. Benkedjouh et al.
منابع مشابه
Prediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کاملDevelopment of a site-specific regression model for assessment of road-header cutting performance of Tabas coal mine based on rock properties
In underground excavation, where the road-headers are employed, a precise prediction of the road-header performance has a vital role in the economy of the project. In this paper, a new model is developed for prediction of the road-header performance using the non-linear multivariate regression analysis. This model is able to estimate the instantaneous cutting rate (ICR) of roadheader based on r...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملPrediction of Fe-Co-Mn/MgO Catalytic Activity in Fischer-Tropsch Synthesis Using Nu-support Vector Regression
Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractiv...
متن کاملPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Intelligent Manufacturing
دوره 26 شماره
صفحات -
تاریخ انتشار 2015